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On the series that represent tides and surges 
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SUMMARY 
This paper is concerned with a progressive wave of genera1 

form in an infinitely long estuary of uniform cross-section when 
there is a permanent current independent of the wave. The only 
approximation is the neglect of friction. Explicit formulae in 
the form of infinite series are found for the surface-elevation and 
for the current. 

In  the special case in which there is no permanent current and 
when the oscillation at the mouth of the estuary reduces to a single 
harmonic constituent, the first five harmonic shallow water 
constituents at any place up the estuary are evaluated. 

1. INTRODUCTION 
In  the making of tide-tables for a port, the basis of the method usually 

employed is that of a series of harmonic constituents. When the port is 
on an estuary, a number of these constituents are of the type usually called 
' shallow water ' constituents. For many years Doodson (1957) has used 
his method of ' harmonic shallow water corrections ' in predicting the 
times and heights of high and low water. This method implies the existence 
of a much larger number of shallow water constituents than the number 
of harmonic units on any predicting machine. 

It is the object of the present paper to examine the series in the case 
of an infinitely long estuary of uniform cross-section when there is a 
permanent current down the estuary and no friction. This is an ideal 
problem in the three respects of infinity, uniformity and absence of friction. 
But, because precise results are obtained, the investigation appears to be 
of value in spite of the limitations indicated. 

As the cross-section of the estuary is uniform, the permanent current 
is also uniform. Owing to the absence of reflection, the motion takes the 
form of a progressive wave, and no serious limitation is placed on the shape 
of this wave at the mouth of the estuary. 

The simple basin specified is that which was taken by Saint-Venant 
(1871), McCowan (1892) and Fjeldstad (1941) when they evolved their 
accurate finite solutions of the fundamental equations. Saint-Venant did 
not include a permanent current, but McCowan did. Their solutions show 
that the heights of high and low water at any place up the estuary are the 
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same as at the mouth, and this gives a complete answer to the most important 
question regarding a combination of tide and surge. They also show that 
a bore will always form, the position of its formation depending on the size 
and shape of the oscillation at the mouth. 

But the solutions of Saint-Venant, McCowan and Fjeldstad do not 
express the surface-elevation as an explicit function of position and time, 
and it is just such a function which is required in tidal prediction and which 
is provided by series. 

I first obtained the general formulae of the present paper by substituting 
:series with unknown coefficients into the fundamental differential equations. 
But Dr M. S. Longuet-Higgins then pointed out that the results could be 
,obtained much more shortly from the implicit solutions by means of 
Lagrange’s theorem on implicit functions. I now follow this method. 

The early terms of.the series have an interest in themselves, and they 
take simple forms when there is no permanent current. Taking the special 
case in which the oscillation at the mouth reduces to a single harmonic 
.constituent, the first five harmonic shallow water constituents are evaluated 
for any place up the estuary. The first three of these were given by Airy 
in  1842. 

2. NOTATION AND GENERAL EQUATIONS 

Denote by : 
g the acceleration of gravity ; 
h the undisturbed depth of water ; 
x distance up the estuary from the mouth; 
t the time ; 
4 the elevation of the water-surface above its undisturbed level ; 
u the current up the estuary ; 
uo the permanent current down the estuary, assumed constant and 

uniform; 
F(t)  the ratio ( /h  at the mouth of the estuary; 

:and write 
c = (gh)U%, 8 = x/(c - uo), -q = t - 8. 

The equation of continuity is 

and  the equation of motion is 

while a stationary solution of these equations is given by 

l = O ,  u = - u w  
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Following Lamb (1932, $187), multiply (1) by [g/(h+ {)Iu2 and 
subtract from (2) ; the resulting equation may be written 

and this will be satisfied when 

Both (4) and (5) may be integrated to give 

(6) u + uo = 2[g(h + 5)]1'2 - 2c, 

where the constant of integration has been chosen so as to satisfy (3). 
Equation (6) may be written in the forms 

u+u, - = 2 ( 1 + i )  1/2 -2, 
C 

5 u+u, 1 u + u , 2  
= 7 + &-) a 

Substitution from (8) into (2) gives 

au + ( C + : u , + g u ) ~  au = 0 

and into (1)  gives 

and hence both (1) and (2) reduce, in effect, to 

au au 
- + u- = 0, at ax 

where 
u = c-u,+ i&4+uo). 

Substitution from (4), (5) for au/at, au/ax into (9) gives 

a< a< - + u- = 0, at ax 
and from (7) into (10) gives 

(7) 

(9) 

( 1 0)" 

The velocity U is that of propagation of an element of the wave up the 
estuary. 
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are given respectively by 
It is easily verified that solutions of the differential equations (11) and (9) 

[ / h  = F(t - X /  U),  
(. + u0)ic =f(t - XI w, (13) 

(14) 
where F( ), f( ) are any differentiable functions. Since x = 0 at the 
mouth of the estuary, the function F is that which has been defined 
above. The function F(t) will be regarded as prescribed, and from its 
physical meaning it follows that F(t )  > -1. From (7) it follows that 

the arguments of F, .f being the same. 
Equation (13) is equivalent to McCowan’s solution (1892), and when 

uo = 0 it is equivalent to Saint-Venant’s solution (1871). 
It is seen from (12) and (13) that, for the same time, the effect of the 

permanent current is to make a specified surface-elevation occur at a 
shorter distance up the estuary than when there is no such current. 

if= (l+F)118-1, (15) 

3. THE SERIES 

The equations (13) and (14) give [ and u as implicit functions of t and x, 
but it is the object of this paper to obtain 5 and u as explicit functions. 
Such explicit functions, in the form of infinite series, may be derived 
from (13) and (14) by means of Lagrange’s theorem on the expansion of 
a function which is defined implicitly (Edwards 1896, p. 451). 

Lagrange’s theorem may be stated as follows. Let +(y),  #(y)  be functions 
which may be expanded in powers of y - 7, and let 

Y = q+e#Jw; 
then 

where the bracketed indices denote derivatives with respect to q. 

are given the meanings indicated at the beginning of $2, so that 
Now, in the present application of the theorem, the parameters q and 0 

on taking 

thus (13) and (14) may be written as 
i i h  = F(y),  

(. + uo)/c = f (Y>.  
From (12), (17) and (18) it follows that 

c-uo 
#J(Y) = - 3c[l+ F(y)]1~2-u0-  2c 

[l + F(y)]1‘2- 1 
[ 1 + F (  y)]1/2 - QUo/C - 3 ’ = 

and from (15) that 
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It will be supposed that F(y )  and f(y) satisfy the condition imposed on +(y) 
in Lagrange's theorem. From (18) and (20), the expansion (16), with 
F in place of +, becomes 

Y m 

where 

for n = 1, 2, 3, ..., and from (15), (19), (20) and (21), the expansion (16), 
with f in place of +, becomes 

where 

The series (22) and (24), with their coefficients given by (23) and (25), 
constitute the required solution of the fundamental equations in terms of 
F( ), which itself gives the prescribed elevation at the mouth of the 
estuary. 

The condition imposed on +(y) in Lagrange's theorem requires that 
+(y) shall not be infinite, and, by (17), this requires that U shall not vanish. 
Assuming that U, the velocity of propagation up the estuary, is once 
positive, it follows that, for the validity of the expansions (22) and (24), 
it must always be positive. From (12) and (18) this requires that 

3 [ 1 + F ( Y ) ] ~ / ~  - U O / C  - 2 > 0. (26) 
When the expressions (23) and (25) for the coefficients Z,(q) and U n ( ~ )  

are expanded in ascending powers of F(q), the first term in each is 

and this is equal to 

Examples of this will occur in $4. 

IF1 < 1. 
the validity of the expansions, 

The expansion of (1 + F)lI2 in ascending powers of F requires that 
On combining this with the condition (26) it follows that, for 

:(.o 9 c  +2)2 < l+F(r]) <2.  (27) 

At the mouth of the estuary, the relationships (27) give the lower and 
upper bounds of the ratio of the total disturbed depth of water to the 
undisturbed depth. 
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4. EARLY TERMS OF THE SERIES WHEN THERE IS NO PERMANENT CURRENT 
When uo = 0, then 

0 = x/c, 7 = t-x/c, 
and the early terms of the series (22) and (24) may be written as 

respectively, where U, = 2(1+ F)1/2-- 2, and the arguments of F, z,, u, 
are t - x/c. 

On using (23) and (25) and expanding Z,, U ,  in ascending powers of F 
as far as F5, the following results are obtained: - 

75 1077 - F4- - 
64 

[: F3- 63 F 4 + m F 5 ]  1341 (2) z2 = 

Z3 = [6"4 320 

z, = [$ F5]0, 

1 1 5 7 
4 8 64 

- F4- 189 F5] (3) , 

u, = F- - F2+ - F3- - F4+ 128 F5 

640 
u, = [ T F 2 -  3 105 

64 

3F3-- 9 F4+mF5] 1647 (2) , 
u, = [s 8 

u3 = 

u, = [& F51($. 

(30) 

I 
These results may also be obtained from the fundamental equations by 
the method of successive approximations. 

5 .  HARMONIC CONSTITUENTS 
When there is no surge, the surface-elevation at the mouth of the 

estuary is given by a series of the form 
m 

n = l  
F(t) = 2 A,cos(u,~+R,), (31) 

where A,, a,, un are constants. When (3 1) is substituted into the formulae 
of $3, the surface-elevation at any place up the estuary is given by a triple 
series of harmonic constituents. 

When the series (31) reduces to one term, so that F(t )  = Acos(ut+u), 
then F(t - x/c) = A cos 8, where 6' = a(t - x/c) + TX. Substitution into the 
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results of $4 then gives 
3 21 ?!! = - -A2sin20+ -A3(sin8+sin30)- 

U 4 32 
75 1077 - - A4(2 sin20 + sin40) + - A5(2 sin 8 + 3 sin 30 + sin 5 4 ,  , 128 2048 I 

9 189 
s? 1024 
2, 27 
u4 - 2048 

given by Airy in (1 842). 

same function of 8 gives 

_ -  z3 - A4(sin 28 + 2 sin 40) - - A5(2 sin 8 + 27 sin 38 + 25 sin 58), 

-- - - - ~ y 2 ~ ~ ~ e + 8 i  cos3e+ 125 cos5e). I 
J 

The terms of the above formulae in A2 and A3 are equivalent to formulae 

Rearrangement of the series (28) so as to group together terms with the 

= A(1- $A2(:)’[l+ zA2(149-3 1 ( ~ ) 2 ) ] } c o s 8 +  

+ L A 3 + +  32 c &,Ae[1077-378~)2]}sin0+ 

+ - A4 c>” cos29- 

- 4 c  A ~ E { I +  $ ~ 2 [ :  -3 (:)2]I)sin~~- 

- $A3 (F)2 { 1 + A2 [ 149-27 E>”]} cos38 + 

63 
32 

+ - 3 A32{7+ 3 A2[? -567 (F)2]}sin38+ 
32 c I 32 

~ 0 ~ 4 8 -  8 c  -A4- ux{S - - 3  c > ’ ) s i n 4 8 -  

- 45 2048 A5 r:)’ (149 - 75 (:)”> cos 58 + 
(:)’} sin 58. (33) 
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